

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

graph-prov-test

Install in develop mode

python setup.py develop

Run tests

python setup.py test

This command runs all unittest tests (TestCase classes) in the tests package.

2015-08-26

gpc all
gpc make target1 target2 …
gpc comment “my comment”
gpc make target0
gpc comment “den här datafilen skapade den fina figuren”
gpc status

gpc explain ~/figs/en_fin_figur_på_min_disk.png
gpc purge??
för att radera cache-filer, t ex äldre än ett visst datum

gpc make –commit ae723434 target1
cp target1 target1_new
gpc make –commit b9334.. target1
cmp target1 target1_new

om den finns: leverera ut
om inte: säg nej, du får stasha, checka ut och köra make igen

gpc ändrar inte i git, bara läser

ifneedbe:
gpc init
skapa .gpc/
skapa .gpc/config

gpc cached target1 ~/temp
dumpa alla “target1” i ~/temp, omdöpta med t ex make-tid som prefix

gpc make –reproduce target1
om du inte har någon digest, kasta felmeddelande
om du har gammal digest, kör igen och jämför med ny digest; rapportera eventuell skillnad
om cachad fil finns, dumpa ut resultat från då och nu

(detta bör för övrigt göras alltid när man kör gpc make och digest finns, men inte cachat resultat)

och innan man skriver sin artikel:
gpc all –reproduce

gpc tag label1 label2 label3
gpc tag -d label2
inte så hög prioritet på den saken

gpc log

sumatra har sync för att merga log-filer
- vi behöver eventuellt inte det?
- men cache-katalogerna ska man bara kunna kopiera in

Möjligen är ändå "gpc merge" önskvärt eftersom den kan kolla motsvarande gpc make --reproduce, dvs att eventuella skillnader i det som ska vara identiskt rapporteras

smt version
gpc –version

2015-09-03

gpc make [output]:
 find out what is needed in directory, current state of system, etc
 from that, calculate hash/id of the requested output
 if not cached output exists:
 setup working directory
 start separate process to run the task that directory
 wait
 save record
 cache output
 clean/remove working directory

 when output exists:
 present it to user

2015-09-04

- File id (fid): hash of contents
- Target id (tgtid): relpath and fid
- Task id (tskid): hash of procedure, significant context, etc
- Execution id (eid): tskid, [tgtid for each target]

Get tgtid:

	Get T, the Task that produces the Target

	Get all Targets the Task T depends on

	For all inputs, get tgtid

	Compute eid for T

	Check in execution database for eid:

	If it exists, we can get the tgtid of all outputs and return the requested one.

	Else, the execution has never before been done.

	Return tgtid of requested target.

Execute:

	Prepare execution folder.

	Execute.

	Compute fids of newly produced files and save files under their fids.

	Save a record in the execution database: eid –> tgtids

	Save files under their fids.

Get target:

	get tgtid

	from target database, get fid and path

	check in file storage if file is there

	if not, execute

	get file from storage and put it at path

 Comp d: (Comp[] parents, Rule r, Loc l)
Rule r: (Loc[] inputs, Loc[] outputs, Operation op)
Resource r: (Loc location, Digest digest)
Calc c: (Resource[] inputs, Operation op)
Run r: (Calc c, Resource[] results, User u)

Some loose explanations

Resource

A resource is an output that results from a calculation. It might be a file, a value, an object in a database, or something else. Implementations of the Instrument interface are the tools to handle such resources. An Instrument implementation does not represent the actual content of the resource. For example, a File instance File('path/to/file.ext') is merely an instrument to handle the corresponding resource, which can be described as “a file, with any content, placed at 'path/to/file.ext'”. And a Value instance called Value('foo') is a tool to handle “a constant value with the symbol 'foo'. Hence, the concrete meaning, or content, of the resource is one thing, and the instrument that will handle it is another.

Thus, ‘Instrumentinstances are used to specify the expected outputs of a calculation. AndInstrumentinstances are also used to do all the practical handling of the actual, concrete outputs. In fact, the Boyle system should not depend on or have to "know" anything about the concrete implementations ofInstrument`.

Procedure

Procedures are things that can be done. For example run a shell command or an R script. To be useful in a Boyle workflow, any operation should help to create one or more resources. The Procedure of a definition is the equivalent of the “recipe” in GNU Make.

Definition

A definition expresses an expectation that some resource (output) will be created if a Procedure is run. A definition may depend on other definitions, which can then be seen as inputs to the recipe. In other words, a recipe requires zero or more resources defined in some upstream definition(s).

Definitions should be deterministic, in the sense that its recipe should always cause the same resource (file content, value, etc) to be created upon completion.

Creating a resource according to definition

Assume there is an environment, or context, where resources (like files and values) can reside. Use the proper Instruments to place the input resources in this environment. Run the recipe. Now the output resources are expected to exist in the same context, and the Instruments corresponding to output resources can save away the output resources.

Definition is essentially a tuple
(Instrument instr, Definition[] dependencies, Procedure recipe)

Resource is a tuple
(Instrument instr, String digest)

What is run is a Calculation, a tuple
(Resource[] inputs, Procedure recipe)

Result is a tuple
(Calculation calc, Resource r)

A Definition, before running, must be resolved into a Calculation. The process of calculating something with Boyle is all about successively transforming the Definitions in a graph into Calculations and running them to resolve further Definitions.

So to “make” a Definition, i.e., to produce the Resource defined by a Definition, what has to be done?

	Intelligent list here…

How to bring source code along automatically?

We want to be able to define something like the following:

a = define(
 Value(),
 some_input,
 Python('''
 import mymodule
 out = mymodule.do_something(inp)
 ''')
)

A problem, then, is what do we do about the source code files (mymodule.py etc)?

	The simplest solution is to disallow this type of definition: The end user must somehow specify that mymodule.py is a dependency, etc, etc. This solution is so inconvenient that it is out of the question.

	An alternative solution, more complicated but also more convenient, is that we create a notion of a “home directory” somehow. Each definition has a home directory, which is the directory that the definition (or at least its Procedure) is instantiated in. In that case we might do the following. (1) Analyze the two-line script (import mymodule etc) and thereby find mymodule.py or whatever. (2) Recursively find all the dependencies of mymodule that can be found under the home directory. (3) Somehow include this code as a part of the definition, perhaps as a Resource dependency…

Some definitions

Requested is a set given by the user.
Concrete = {d: inp \in Known \forall inp \in parents(d)}
Unknown = Concrete \cap {d: |Log.trusted(calc(d), instrument(d))| = 0}
Known = Concrete \cap {d: |Log.trusted(calc(d), instrument(d))| = 1}
Restorable = Known \cap {d: Storage.can_restore(resource(d))}
Runnable = {d: parents(d) \subseteq Restorable}
RunNeeded =
(Requested \cap \compl{Restorable})
\cup ({d: children(d) \cap RunNeeded \neq \varnothing} \cap \compl{Restorable})
= (Requested \cup {d: children(d) \cap RunNeeded \neq \varnothing}) \setminus Restorable

Assume that we have a directed acyclic G = (V, E) where all leaf nodes are Requested.

Assume that |Log.trusted(calc(d), instrument(d))| \in {0, 1} \forall d \in V. (Otherwise there is a conflict, which in practice will raise an exception and thus be handled elsewhere.)

To deliver the resources corresponding to a requested set of definitions

While Requested \nsubseteq Restorable, find and run a nonempty A \subseteq RunNeeded \cap Runnable. The vertices in A will then leave RunNeeded and thus not appear again. So eventually this procedure will have exhausted all of RunNeeded. When this happens, all resources can be restored.

Algorithm for Known/Unknown/Undecidable

Partitions a set of definitions into {Known, Unknown, Undecidable}. The algorithm guarantees that Unknown = \varnothing \implies Undecidable = \varnothing. In other words, in a set of definitions, at least one will be Known or Unknown. They can not all be Undecidable.

Take C_0 = root nodes

Let K_0 = C_0 \cap Known and U_0 = C_0 \cap Unknown. They will all be decidable since they have no parents, so K_0 \cup U_0 = C_0.

For i = 1, 2, \ldots,

let C_{i+1} = {d: d \in \bigcup_{p\in K_i} children(p) \land parents(d) \subseteq \bigcup_{j=0}^i K_j}, and

K_{i+1} = C_{i+1} \cap Known
U_{i+1} = C_{i+1} \cap Unknown

This way, K_0 \cup K_1 \cup \cdots \cup K_N is the set of known nodes reached in N steps, and U_0 \cup \cdots \cup U_N are the unknown nodes. If C_N = \varnothing then so is K_N and therefore also C_{N+j} = \varnothing for j > 0.

If C_{N+1} = \varnothing, can we possibly have Known \setminus (K_0 \cup \ldots \cup K_N) \neq \varnothing ? Does not seem so, but can we prove it?

Algorithm for finding nonempty A \subseteq (RunNeeded \cap Runnable)

Begin by coloring the nodes.

Note that Runnable \subseteq \compl{Undecidable} \implies A \subseteq \compl{Undecidable}.

We are done iff Requested \subseteq Restorable, and since Restorable \subseteq Known, we have Requested \subseteq Known if we are done. And Requested \subseteq Known can only hold if all nodes Unknown = \varnothing. And the only way to move an element from Unknown to Known is to run its calculation. Hence Unknown \subseteq RunNeeded. And since \forall d \in Unknown we have descendants(d) \cap Runnable = \varnothing, we also know A \cap descendants(d) = \varnothing. This is just a complicated way of saying we don’t have to look below any Unknown node.

If Unknown = \varnothing, all nodes are known, and therefore it can be decided for each node whether it is restorable or not. And we are done exactly if Requested \subseteq Restorable. So Unknown \cup (Requested \cap \compl{Restorable}) = \varnothing \iff done.

Let C_0 = (Requested \cap \compl{Restorable}) \cup Unknown.

First of all, note that C_0 = \varnothing \iff we are done. Also note that C_0 \subseteq RunNeeded.

For i = 1, 2, \ldots, let
C_{i+1} =
\bigcup_{d\in C_i} parents(d) \cap \compl{Restorable}
= \bigcup_{d\in C_i} parents(d) \setminus Restorable.

Assume that C_i \subseteq RunNeeded. Then, for each element d \in C_{i+1} the following will hold:
(1) children(d) \cap RunNeeded \neq \varnothing (because d is a parent of some e \in C_i \subseteq RunNeeded), and
(2) d \notin Restorable (by definition).

(1) and (2) together imply d \in RunNeeded by definition, so C_{i+1} \subseteq RunNeeded if C_i \subseteq RunNeeded.

Hence, C_0 \cup \ldots \cup C_i \subseteq RunNeeded for any i \geq 0.

And finally note that, by definition, C_{i+1} = \varnothing iff \forall d \in C_i we have parents(d) \subseteq Restorable. In plain English, if the C_{i+1} is empty, then at least one element in C_i is runnable. And clearly C_{i+1} will be empty at some point, when a root node of the graph is reached.

So the solution is to take:

C_0 = (Requested \cap \compl{Restorable}) \cup Unknown,

C_{i+1} = \bigcup_{d\in C_i} parents(d) \setminus Restorable for i = 0, 1, 2, \ldots, N such that C_{N+1} = \varnothing,

A = \left(C_0 \cup \ldots \cup C_i \right) \cap Runnable.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

